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Numerical studies of steady flow dispersion at low 
Dean number in a gently curving tube 
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Using both Monte Carlo and numerical techniques, Taylor dispersion in a curved 
tube at low Dean numbers has been evaluated and the results are in qualitative 
agreement with those found by Janssen (1976) : Dn2Sc is the controlling parameter 
with Dell falling to about 0.2 of its straight-tube value at high values of DnaSc. 
Agreement with available experimental data is generally good. Further, we find that 
for large Dn2Sc, the transition from convective to diffusive dispersion occurs 
earlier than in straight-tube flow, but only by a factor of two. 

1. Introduction 
Taylor (1953) first described the process by which the rate of axial dispersion of 

a solute transported by laminar flow in a straight, circular tube is reduced by radial 
diffusion. This process, commonly known as Taylor dispersion, has since been studied 
in a wide variety of flow situations, but primarily when the flow waa purely in the 
axial direction. Additional complexity arises when secondary flows such as are found 
in curved tubes are also present. In  such cases, lateral mixing due to molecular 
diffusion is augmented by the convective secondary motions. 

Flow in curved or coiled tubes is important in a number of diverse applications. 
Helical coils are often employed in devices for heat and mass exchangers due both 
to their compactness and to the higher transfer coefficients they offer. The dispersion 
that occurs while a solute flows through such a system is of particular interest in 
chromatographic columns where peak broadening can occur in tubing leading to or 
from the column, in helical coils used as a configuration for chemical reactions (where 
it is desirable to reduce axial dispersion) and in systems where the molecular diffusion 
coefficient is measured using Taylor's method (these systems are usually coiled). 
Dispersion in curved tubes is also of physiological interest due to the prevalence in 
the circulatory and respiratory system of curved and bifurcating vessels. 

2. Previous work 
Dean (1927,1928) first presented the solution for flow through a curved tube with 

small curvature ratio (ratio of tube diameter to helical coil diameter) ; his solution 
includes the induced secondary flow field caused by centrifugal forces but does not 
account for the geometric effects of streamline curvature. Under such conditions, 
Dean found that a single dimensionless quantity, the Dean number, determines the 
flow field. Following recent convention we define the Dean number as follows: 

Dn = (;)' Re, 
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FIQURE 1. Coordinate system for curved tube. a is the tube radius and r is the dimensionless radial 
location. z is a dimensionless axial length. Note that the secondary flow runs directly across the 
tube when 0 = 0. 

where a is the pipe radius, b is the coil radius and Re is the Reynolds number based 
on pipe diameter. 

Dean obtained a perturbation series solution for the secondary flow stream 
function ($) and the axial velocity profile (v,) in terms of Dn, the first term of which 
is thought to adequately describe the flow field for Dn < 17 (Ruthven 1971). In this 
paper, we use only the first term of Dean’s solution: 

4 = Dnaf(r) sine, 

v, - 2( 1 - r2) = Dn2g(r) cos 8, 

where r is the normalized radial coordinate (with the tube boundary at r = 1) as 
defined in figure 1. Axial velocity (w,) is normalized by the average axial velocity (V) ,  
and the secondary flow velocities (w, = (l /r) a$/aO and vo = -a$/&) have been 
normalized by v/a where v is the kinematic viscosity.f(r) and g(r)  were found by Dean 
to be: f(r) = (4r-9r3+6r5-r’)/72, 

g(r)  = (19r - 40r3 + 30r5 - lor’ + re) /  1440. 

Erdogan & Chatwin (1967) were the first to use Dean’s solution for the calculation 
of Taylor dispersion in a curved tube. Their solution, however, consists only of the 
leading-order term of a series expansion and is therefore of limited applicability and 
can only predict under what conditions Taylor’s straight-tube solution remains valid 
for flow in a curved tube. Nunge, Lin & Gill (1972) examined laminar dispersion in 
a curved tube using the velocity distribution of Topakoglu (1967) that relaxes Dean’s 
constraint that the curvature ratio be much less than one. Despite this improvement, 
the results of Nunge et al. suffer from the same limitations as those of Erdogan & 
Chatwin. In  a more recent numerical study, Janssen (1976) determined the steady- 
state effective diffusion coefficient for flow in a curved tube under conditions where 
(2a) is valid. His results will be discussed below. 

We present here the results from two numerical simulations which examine the 
effect of secondary flow on axial dispersion using Dean’s solution as described in (2) 
for Schmidt numbers (Sc = V / K  where K is the molecular diffusion coefficient) between 
1 and 1000. The use of Dean’s solution limits our results to Dn < 17 and a /b  < 0.02. 
The first model described uses Monte Carlo techniques to investigate both the 
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transient and steady-state behaviour of the axial dispersion process; the second 
model provides a numerical solution for the steady-state concentration profiles and 
yields a more accurate prediction of the axial dispersion coefficient. 

3. Monte Carlo model 
3.1. Description of the model 

The dispersion process for cases of low Dean number is described by the convection- 
diffusion equation written here in dimensionless form : 

[ ac ar ae [ 3 ac 
-+Sc a7 v,-+-- +Pe vz- =V%, (3) 

where T is dimensionless time (7 = Kt/aa) and Pe is the PQclet number based on tube 
radius. We model molecular diffusion as a Monte Carlo process adopting an approach 
that has been successfully used by others to model Taylor dispersion in turbulent 
(Allen 1982) and oscillatory (Jimenez & Sullivan 1984) flow conditions. 

The numerical procedure involves a sequential solution of the convective and the 
diffusive parts of (3) at each timestep. The initial condition is a ‘bolus’ injection - a 
collection of ‘particles ’ (usually 500) is distributed randomly in the cross-sectional 
plane. At each subsequent timestep, particles are first diffused and then convected. 
A particle’s diffusive displacement is selected at random from a spherical Gaussian 
probability distribution. Particles displaced to locations outside the tube are 
reflected back inside. The convective displacement is determined by the axial and 
secondary velocity associated with the current location of the particle. Axial motion 
of each particle is computed using an Euler differencing scheme. An Euler differencing 
scheme was originally used for particle convection around the secondary flow 
streamlines, but it was found to contain a secular error causing all particles to 
migrate toward the wall. To minimize this tendency, secondary motions were 
computed with a second-order difference equation : 

(4) z(7 + A7) = z (7 )  + WJT) A7 +4[v2(7 + A7) - w2(7)] AT. 

The first and second moments of the axial distribution of particles can be calculated 
as a function of time, and the effective axial diffusion coefficient (DePP) found from 

-.. 

the rate of change of the variance: 
Ag; 

Deff = s T *  (5) 

Here A T  is the total time interval over which Deff is being measured and 2 is the 
dimensional displacement, az. 

Several criteria were used to determine the appropriate timesteps (AT) between 
particle movements. The expected radial diffusive motion (Ar) at each timestep 
(AT = (4A7)f) was constrained to be less than 5 %  of the tube radius yielding the 
constraint : A7 < 6.25 x 

We also required that the maximum convective displacement due to the secondary 
flow during A7 be less than 5 %  of the tube radius. The maximum secondary flow 
velocity (wmax) for the first term of Dean’s perturbation solution is: 

v,,, = 0.014 Dn2, 

3.57 
Dn2Sc ’ 

giving the constraint : 
A7 < - 
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FIGURE 2. Normalized axial variance of the particle distribution as a function of non-dimensional 
time. The curve is normalized to give a final slope of one for dispersion in a straight circular tube. 
Solid line is for Dn2Sc = 7.27 in which case the secondary flow is negligible; dashed line is for 
DnWc = 7273 showing significant effects of secondary flow. 

A second convective constraint comes from a limitation on the numerical diffusion 
caused by the differencing scheme used to move the particle along the secondary flow 
streamlines. The numerical diffusion was constrained to be, a t  most, 5 %  of the 
molecular diffusion at each timestep yielding : 

137 
[ Dn2Sc]g ’ 

AT < 

The most stringent of the constraints (6), (8) and (9) was used to determine the 
timestep. In practice, timesteps of approximately half of this value were used. 

Due to the stochastic nature of the solution procedure, the value of DePp thus 
obtained will naturally be a statistical quantity. A statistical analysis to determine 
the expected standard deviation (aDerr) of the effective diffusion coefficient as a 
function of number of particles (N, )  yields: 

The numerical results confirmed this estimate. 
Deff was calculated using (5 )  at two times sufficiently far apart that they were 

statistically independent of one another. No advantage was found in schemes 
employing multiple determinations of D,, over this same time interval. 

Deff as defined by (5 )  varies with time until all particles have randomly sampled 
all available axial velocities. Thereafter Deff is constant as indicated by the region 
on figure 2 where the variance varies linearly with time. For Taylor’s solution in a 
straight tube, this lateral ‘mixing time’ is about 0 . 1 5 a 2 / ~  (Chatwin 1970, value 
derived from analysis) ; for flow in a curved tube this timescale is somewhat reduced 
due to the secondary flow. In  general, we ran twice this long to ensure that the 
endpoints used to calculate Deff were statistically independent of one another. 

The timescale for lateral mixing can be determined in several ways. The most 
obvious method is to identify the point at which the variance first becomes linear 
in time; in practice, however, this proves to be difficult to determine. Alternately, 
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FIQURE 3. Deff/D, as a function of DnaSc. Closed circles are predictions from Monte Carlo 
model (using 500 particles). The solid line is the prediction of the spectral model. 

an auto-correlation coe5cient can be computed relating the current cross-sectional 
position of each particle to its original cross-sectional position. When this correlation 
coefficient approaches zero, the particles are well-mixed. If Pn(t) represents the 
cross-sectional position of particle n at time t ,  P the mean cross-sectional position 
of all particles, and a(t) the standard deviation of the cross-sectional positions, then 
the auto-correlation coe5cient (rc)  is defined as : 

Two correlation coefficients were calculated : one relating the original radial 
location of a particle to its current radial location; a second relating the original 
secondary flow streamline on which the particle was travelling to the current one. 
The first correlation coefficient is useful for finding the uncorrelation time (time for 
the particle position to become uncorrelated with its original position) in the absence 
of secondary flow. We msume this uncorrelation time to be directly related to the 
lateral mixing time. As secondary flow develops, this coefficient is less appropriate 
because the particles change their radial position as they follow the streamline, yet 
their position should (without diffusion) remain correlated with their original 
position. For this case, the second correlation coefficient (based on secondary flow 
stream function) becomes more appropriate. 

3.2. Results 
A series of numerical experiments were conducted, varying Dn from 0 to 13.5 and 
Sc from 1 (gas) to 1000 (liquid). For each of these runs, the variance of particle axial 
position was determined as a function of time (e.g. figure 2). Using (5), the steady-state 
effective diffusivity was then calculated. Figure 3 shows the steady-state values of 
DefP (closed circles) found from these numerical experiments. The results of the Monte 
Carlo model are roughly concordant with those of the spectral model (solid line) 



334 M .  Johnson and R. D.  Karnm 

described next. Observed differences can be ascribed to the variability inherent in 
the Monte Carlo technique as indicated in (10). 

The abscissa of figure 3 is the dimensionless parameter Dn2Sc the significance of 
which was first noted by Janssen (1976). Dn2Sc can be thought of as a secondary flow 
PBclet number as it represents a ratio of timescales for secondary flow and radial 
diffusion. For Dn2Sc < 100, diffusion dominates transport in the cross-sectional 
plane and DePf equals the straight tube result (Ds) .  As Dn2Sc increases, secondary 
flow takes on more significance and DefP falls. This continues until Deff drops to about 
one-fifth of its straight-tube value for Dn2Sc > lo4. 

For Dn2Sc < 100, the secondary flow is negligible and thus, the radial correlation 
coefficient is appropriate. As seen in figure 4(a), the uncorrelation time is in good 
agreement with the straight-tube value predicted by Chatwin (0.15 a2/K). For 
Dn2Sc > lo4, the correlation coefficient based on stream function was used and, as 
seen in figure 4(b), the uncorrelation time falls to approximately one-half of its 
straight-tube value. For Dn2Sc in between these two limits, neither correlation 
coefficient adequately represents the correlation of a particle's cross-sectional position 
to its original position. However, by reviewing the plots of variance v8. time (e.g. 
figure 2), we find that the uncorrelation time ( t * )  can be related to Deff approximately 
as : 

The Monte Carlo simulation allowed considerable versatility in examining the 
dispersion process. To ascertain that the results were entirely due to the secondary 
flow field and not to changes in the axial velocity distribution, we performed a 
simulation with the Dean axial velocity profile replaced with the Poiseuille profile 
and found no difference in the results. Changes in Deff are thus due exclusively to 
secondary flow. 

Although the axial velocity profile changes little from a Poiseuille profile, the 
effective axial profile seen by a particle might be quite different than the Poiseuille 
profile: as the particle travels around its secondary flow streamline very rapidly, it 
tends to move forward at the average axial velocity of that streamline. By assigning 
to each location an effective axial velocity equal to the average streamline axial 
velocity (this is actually a weighted average, weighted in inverse proportion to the 
secondary flow velocity of each location on the streamline), the profile deviates 
significantly from the Poiseuille profile. For the first term of Dean's perturbation 
solution, this distribution can be approximated by : 

Here + is the value of the secondary flow stream function at a particular location 
with $(r  = 1) = 0. 

This modified axial velocity profile was used in the Monte Carlo simulation, while 
simultaneously setting all secondary flow velocities to zero. This simulation examines 
the influence of the effective axial velocity distribution on axial transport while 
preventing the enhanced mixing due to secondary flow. In this case De,,/D, was 
reduced to about 0.4 demonstrating that the effective axial flow profile generated by 
the secondary flow is responsible for much of the reduction in DefP caused by the 
secondary flow, but that other effects are also important. 

The particles were then allowed to rotate around the secondary flow streamlines, 
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FIGURE 4. Correlation coefficient a8 a function of non-dimensional time. 
(a) negligible secondary flow; ( b )  high secondary flow. 

7 

but the axial flow profile was still that described in (13). For Dn*Sc > lo4, the results 
obtained in this manner are indistinguishable from those using Dean’s solution, thus 
indicating that variations in the axial velocity of a particle as it travels around its 
secondary flow streamline are unimportant at high values of Dn*Sc. The reduction 
in D,,,/D, from 0.4 to the value seen on figure 3 must then be due to enhanced mixing 
induced by the particles moving around the secondary flow streamlines. Thus 
secondary flows act to decrease D,, both by enhanced mixing and by alterations of 
the eflective axial velocity profile. 

4. Spectral model 
4.1. Method of analysis 

We now seek a quasi-steady solution of (3). Following the approach taken by Taylor 
(1953)’ axial molecular diffusion is neglected and the equations are rewritten in a 
reference frame moving at the mean axial velocity. The resulting equation is assumed 
quasi-steady and the axial concentration gradient is assumed linear and independent 
of T and 8: 
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The Poiseuille axial velocity profile is used consistent with the finding above that 
the small change in axial flow profile due to curvature at  low Dn has little effect on 
Deff. Introducing a dimensionless concentration : 

C 

X = pe(ac/az) 7 

and incorporating (2) into (14) yields : 

++(1-2r2) = V;,@X. 

Using a finite difference technique, Janssen (1976) solved (15) subject to the 
boundary conditions: (i) the concentration as the tube centre ( r  = 0) is finite, and 
(ii) the mass flux at the wall is zero. It was with this second boundary condition that 
Janssen discovered a problem. He was able to demonstrate that the differential 
equation to be solved always satisfies the solvability condition : 

As Dn2Sc approaches zero, ax/& is independent of 8, and (16), which the governing 
differential equation always satisfies, becomes identical to the zero flux boundary 
condition at the wall. Thus the applied boundary conditions leave the problem 
underspecified at low values of Dn2Sc. Janssen attempted to correct this difficulty 
by introducing an additional wall boundary condition, but was then unable to 
precisely satisfy ax/& = 0 at the wall for high values of Dn2Sc. 

Our method of solutionemploys a Fourier cosine series to describe the concentration 
distribution that successfully avoids this difficulty : 

x(r,8) = co(r)+cl(r) cost9+c2(r) cos28+ .... (17)  

Equation (17) is substituted in (15) with the following result: 

[c:+ic,--c r2 cosn13-#Av2ZX cos(n-1)8 
n-0 n2 1 n-o 

cos(n+1)8 = +(l-2r2). (18) 
n-o 

We then multiply (18) by cos mI3 and integrate from 0 to 71, obtaining for each value 
of m, a distinct equation (see Appendix A). Truncating the series after N terms, we 
obtain N +  1 ordinary differential equations for the coefficients cn(r) ,  n = 0, 1, ..., N. 

The first boundary condition requires that the concentration at r = 0 is finite. 
Therefore, all the coefficients cn(r) must remain finite at r = 0. For c,,, equation (A 1) 
dictates that as r+O, the term (l /r) c; dominates. Thus we require 

dco(r = 0) 
dr 

= 0. 

For n > 0, equations (A 2) and (A 3) show the dominant term to be n2cn/r2 as r+O. 
Therefore, we require 

cn(r = 0) = 0 (n > 0). (20) 
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FIGURE 6. Dimensionleas concentration profile for DnWc = 717. For figures 5-8, the centre 
concentration is arbitrarily set to zero. 

The second boundary condition is that of zero flux at the wall : 

dc,(r = '1 = o for all n. 
dr 

Since the series is truncated for all n > N, equations (19)-(21) represent 2(N+ 1 )  
boundary conditions for the N +  1 second-order differential equations derived from 
(18). If (17) is now substituted into the constraint (equation (16)) we find: 

dc,(r = 1) 
dr 

= 0,  

which is identical to the n = 0 boundary condition of (21). Therefore, this system is 
underdetermined in the same sense as that encountered by Janssen. We can however, 
eliminate this indeterminacy by requiring : 

(23) C0(T = 0) = 0, 

which merely specifies the mean concentration at a particular cross-section. 

was used: 
To solve this set of differential equations, a second-order finite differencing scheme 

(24) r = m A r  ( m = O t o M ) .  

M +  1 nodes were placed in the radial direction (M was usually set equal to twenty). 
Using a central differencing scheme (see Appendix A) to replace the derivatives in 
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FIGURE 7. Dimensionless concentration profile for D d S c  = 2764. 
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FIQURE 8. Dimensionless concentration profile of DnWc = 25 x lo4. 

equations (A 1)-(A 3), an algebraic equation was obtained at  each of the internal 
nodes: m = 1 to M -  1.  For m = 0 and m = M, the boundary conditions (19)-(23) 
were used. Derivatives were replaced with second-order forward or backward 
differences. Thus M +  1 equations were obtained for each of the spectral modes ( n  = 0 
to N), and a set of (M+l ) (N+l )  algebraic equations was obtained. Gaussian 
elimination with full pivoting was used to invert the resulting matrix. 

To determine how many spectral modes were required to describe the concentration 
distribution, cN (the concentration of the highest spectral mode) was constrained to 
be a t  most 1 % of co. For Dn2Sc < 2500, N = 10. For Dn2Sc > 2500, N was increased 
with Dn2Sc up to a maximum of N = 30 at Dn2Sc = lo6. 

From the concentration profiles thus obtained the steady-state effective diffusivity 
is found, using: 

or, in dimensionless form : 

Using (17) and recalling Taylor's result for a straight tube, we find : 

-- (l-2r2)co(r)rdr. 
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FIQURE 9. D,,,lD, aa a function of Dn2Sc. The experimental data points are from 0, van Andel 
et al. (1964), ., Trivedi & Vasudeva (1975); A, Nigam & Vasudeva (1976); 0 ,  Shetty & Vasudeva 
(1977); 0, van den Berg & Deelder (1979); and A, Andersson & Berglin (1981). The solid line is 
the prediction of the spectral model ; the dashed line is from Janssen (1976) ; the dot-dashed line 
is from Erdogan & Chatwin (1967). 

Note that this result depends only on c,,(T), a direct consequence of replacing the 
Dean axial velocity profile (which is &dependent) with the Poiseuille profile. 

4.2. Results 
The concentration profile and steady-state effective diffusion coefficients were found 
for Dn2Sc between 0 and lo5. Figures 5-8 show the concentration profiles for Dn2Sc 
of 717, 1481, 2764 and 25 x lo4. As the secondary flow increases, the concentration 
profiles first become skewed toward the outer wall of the bend. At Dn2Sc z 2000, the 
concentration profiles break into two cells. As Dn2Sc is further increased, the 
concentration profiles take on an appearance which strongly resembles the secondary 
flow stream function. 

The solid line on figure 9 shows the values of Defl computed from these concentration 
profiles; the dashed line is from the numerical model of Janssen (1976) and the 
dot-dash line is the prediction of the perturbation method of Erdogan & Chatwin 
(1967). Janssen’s model and the spectral model described here give qualitatively the 
same results, but as discussed in the next section, the predictions of the spectral 
model more closely approximate the published experimental results ; the spectral 
model also shows better agreement with the analytical prediction of Erdogan & 
Chatwin. 

4.3. Asymptotic limit for high Dn2Sc 

The results shown in figure 9 indicate that DefP asymptotically approaches a constant 
value for high values of Dn2Sc. We therefore examined the asymptotic behaviour of 
(14) and found that as Dn2Sc+ 00, the isoconcentration lines and streamlines 
coincide. Consequently, we can write : 
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where 7 is in the direction normal to the streamlines and K($)  is a function yet to 
be determined. To find Deff, (14) is integrated over an area A ,  bounded by a 
streamline to obtain: 

(29) 
ac 
a2 

PeJ‘, (v,-l)-ddA = 

Using (28) and Gauss’s theorem, we find: 

Equations (30) and ( 2 )  determine K(11,) which, through (28), establishes the concen- 
tration profile. Finally, (25) is used to find DePf. The result obtained using the first 
term of Dean’s perturbation series indicates that Deff/D,-t0.20 as Dn2Sc+m, as 
is indicated by figure 9 (still subject to the constraint that Dn < 17). 

5. Comparison with experimental data 
Numerous investigators have measured the steady-state effective diffusion coefficient 
for flow in helical coils. In many cases however, the data for large values of Dn2Sc 
are suspect because the coiled tubes used were not long enough to allow a steady-state 
to be reached. The length of the tube used is a measure of the time available for 
dispersion. In  order to obtain a reliable measurement of Deff using ( 5 ) ,  both variance 
measurements must be made for 7 > 0.15; however, in most measurement systems, 
the standard deviation of the axial concentration profile is measured at a single 
location, and Deff is assumed to have been constant since 7 = 0. This assumption is 
justified only when 7 > 0.8 (Shetty & Vasudeva 1977). A second inaccuracy stems 
from the non-Gaussian nature of the concentration-time profile. Even if Deft is 
constant over the entire flow period and thus the peak is Gaussian in space, it  will 
not necessarily be Gaussian in time at a fixed measurement site. The criterion for the 
peak to be nearly Gaussian in time can be shown to be (see Appendix B) 

where Pe, is a PBclet number based on the length of the tube ( L )  and Def f .  The 
criterion in (31) can be Bhown to be of similar form to the requirement that 7 > 0.8; 
therefore in figure 9 are shown all available data for conditions satisfying this 
criterion (with Dn < 17). 

Although the agreement between the numerical model and experimental data is 
generally good, one feature stands out: a t  high values of Dn2Sc, the data do not 
approach the limit suggested by the model, although the data do show some tendency 
to level off. Other results (Trivedi & Vasudeva 1975, van den Berg & Deelder 1979), 
with 7 < 0.8 also show a tendency to drop below the limits suggested by the various 
models. 

6. Discussion 
Using both Monte Carlo and numerical techniques, Taylor dispersion in a curved 

tube at low Dean number has been evaluated and the results are in qualitative 
agreement with those found by Janssen: Dn2Sc is the controlling parameter with 
Deff/D,+0.20 for large values of Dn2Sc. This result explains the different dispersion 
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behaviours for gases and liquids a t  identical Dean numbers. Further, we find that 
for large Dn2Sc, the transition from convective to diffusive dispersion occurs earlier 
than in a straight tube, but only by a factor of two, contrary to the conclusion by 
Trivedi & Vasudeva (1975) that  the transition time continues to  fall with increasing 
Dn. The mixing time does not continue to fall because at high Dn2Sc the iso- 
concentration pattern approaches the streamline pattern and becomes independent 
of the magnitude of Dn2Sc. 

The Monte Carlo simulations allow an evaluation of the mechanism by which flow 
in a curved tube changes the effective diffusivity. Several timescales are associated 
with the transverse mixing process: the circulation time of a particle travelling 
around a secondary flow streamline, the time for mixing in a direction normal to the 
streamlines, and the time for mixing along a streamline (Rhines & Young 1983). At 
high Dn2Sc, the circulation time and the time for mixing along a streamline are 
small compared to the time for mixing across streamlines. In  this limit, due to  rapid 
motion along the secondary flow streamlines, the streamlines and isoconcentration 
lines coincide as discussed above and thus the time for mixing across streamlines 
dominates the process. For intermediate values of Dn2Sc, there exists a range for 
which the timescales are comparable and the different mixing mechanisms interact, 
producing the transition in D,,,/D, from 1.0 to  0.2. 

The Monte Carlo simulation indicated that the principal effects of secondary flows 
were a modification of the effective axial velocity profile to that of the streamline 
average, and increased mixing due to diffusion between adjacent streamlines. It is 
also interesting that the leading-order changes in the axial velocity profile from that 
of a Poiseuille profile do not (without secondary flow) have any effect on the effective 
diffusivity at the low Dean numbers considered here. 

The regions of small differences between our models and the data can probably be 
explained by numerical or experimental inaccuracies ; however, the differences seen 
for Dn2Sc > lo4 seem more significant. As three different theoretical techniques have 
all substantially agreed that the curve of figure 4 should asymptote to  about 0.20 
for Dn2Sc > lo4, we might look for differences between the experimental and 
theoretical conditions. The models all assume not a helix, but a curved tube 
continuously curving in a single plane. Small deviations from this idealized geometry, 
due either to the helical arrangement found in most experiments, or to  slight 
variations in the tube cross-sectional shape or radius of curvature might contribute 
some degree of randomness to  the flow. The resultant mixing across secondary flow 
streamlines could cause a progressive reduction in DeIf consistent with the 
experimental data. An additional assumption inherent in the model is that  the tube 
curvature only enters the problem through the Dean number. Nunge et aE. (1972) 
have shown that differences in local path length caused by the curvature can only 
increase Deff .  Since the experimental data is lower than our prediction, this is 
unlikely to be a factor. 

To obtain a better understanding of the source of these differences, additional 
experiments should be conducted at higher values of Dn2Sc under conditions in which 
Deff  is known to be constant. The use of two detection sites, both sufficiently far 
downstream to ensure that 7 > 0.15, would eliminate the problems discussed earlier. 
I n  comparison with systems designed for a single detector with r > 0.8, the tubing 
length could be reduced by more than 50 yo while yielding more accurate results. 
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Appendix A 

be transformed into the following set of equations: 
Using a Fourier cosine transformation over the interval [0, R ] ,  equation (18) can 

= $ ( l - 2 r 2 ) ,  

-$Dn2Sc[2f(r) c;] = 0 ,  
c' c 

C" + r - r - ' r r2 

( n - l ) c n P l  = 0. (A 3) 
r 1 

Equations ( A  1)-(A 3 )  are then solved using a second-order differencing scheme 

Cm+l - Cm-l 
f l  

2Ar ' 
c;(mAr) = 

c;+1 - 2c; + c;-1 
Ar2 

c",mAr) = 

At the boundaries (m = 0 or m = M ) ,  derivatives were calculated using three-point 
differencing schemes : 

9 (A 6) 
- 3c; + 4c; -c; 

2Ar 
C k ( 0 )  = 

3CM - 4CM-1 + CM-2 
f l  f l  

2Ar 
ch(MAr) = 

Appendix B. Time moments of the axial dispersion of a Gaussian profile 
for flow in a tube 

We consider here the axial dispersion of a solute assuming the effective diffusivity 
is independent of time from the beginning of the dispersion process. Such a case is 
not physically realistic (except for low P6clet number in which case molecular 
diffusion is the dominant dispersive process), but allows us to evaluate the inaccuracy 
inherent in assuming that a Gaussian spread of concentration in space is also 
Gaussian in time at a fixed measurement location. Under these conditions, relative 
to the mean axial position, the solute disperses in a Gaussian fashion: 

were B is the amplitude of the original Gaussian peak. Note here that although the 
peak is Gaussian in space (x*), it is not Gaussian in time ( t ) .  By evaluating the 
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temporal moments, we will show that only under certain conditions is the profile 
nearly Gaussian in time. 

We define a new variable x such that x = x*+ Vt, where V is the mean axial 
velocity and 2 is the coordinate fixed in space. Substituting this into (B l ) ,  and 
specifying a measurement site at x = L ,  we find that: 

B (L-  Vt)2 [- 4Deff t ] * c(L, t )  = 
2(XD,ff t)+ 

(B 2) determines the various moments in time of the concentration distribution 
measured at x = L. To facilitate this calculation, the following definitions are 
introduced : 

Pe --, VL 

- Deff 

J C W ,  t )  dt 
t-0 

Performing the indicated operations yields the following results : 

D2 6 12 
t ,  = 

Since the solute moves at the same average velocity as does the solvent, (B 3) shows 
that only for large Pe, can t ,  be used to calculate the average solute velocity. 
Calculating the variance we obtain: 

a: = t2 - t ; ,  (B 4) 

If the peak is Gaussian in both time and space, then their respective variances can 
be related through the following expression : 

If we calculate the ratio of the time variance to the square of the mean transit time 
(using (B 3) and (B 4)), we find: 

fl; - 2 (1+4/PeL) 

t: 
- 

PeL (1 + 2/Pe,)2 ' 

For a Gaussian peak, the variance in space can be shown to be (van Andel, Kramers 
& De Voogd 1 9 k ) :  

Therefore, we find that (B 6) yields the correct value for the variance only when 
Pe, & 1. Otherwise a correction factor must be applied when calculating the effective 
diffusivity using the variance and assuming a Gaussian distribution. Specifically, if 
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D& is the value for the effective diffusivity found assuming the peak to be Gaussian 
in time, then the actual effective diffusivity is found to be: 

if Deff has been constant during the dispersion process. 
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